Essentials of Control Techniques and Theory:
Simulation, Sensing and Computer Control

by John Billingsley

See http://www.crcpress.com/product/isbn/9781420091236

Contents

1.  Introduction:  Control in a nutshell, history, theory, art and practice.

There are two faces of automatic control.  First there is the theory that is required to support the art of designing a working controller.  Then there is further and to some extent different theory that is required to convince a client, employer or examiner of ones expertise.

Both are covered here, carefully arranged to separate the essential from the ornamental.  But perhaps that is too dismissive of concepts that help us to understand the processes that underpin the controller's effects.

1.1. The origins of control   
1.2. Early days of feedback.   
1.3. The origins of simulation.   
1.4. Discrete time.   

2.  Modelling time. 

Describing time-variation with simple differential equations, simulation both digital and analogue.

Before designing any but the simplest control system, we must understand the dynamic behaviour of the system.  When an input is changed, it causes changes that can affect the future values of an output.  'States' within the system 'remember' the effects of the past values of inputs that have been applied.  A set of differential equations can express the rates-of-change of the state variables that determine exactly what is going on at any moment.  In years gone by, the equations have been solved with mechanical and electronic systems, but today by far the most convenient way is to use software.  Methods of solving the differential equations are introduced.

2.1. Introduction.   
2.2. A simple system.   
2.3. Simulation.   
2.4. Choosing a computing platform   
2.5. An alternative platform.   
2.6. Solving the first-order equation.   
2.7. A second order problem.   
2.8. Matrix state equations   
2.9. Analogue simulation.   
2.10. Closed loop equations   

If you have tried the simulations before, finding that some did not work, it was because later browser versions deprecated the use of embedded Java applets. Now HTML5 has introduced the 'canvas' graphic method and all the examples have now been updated. (2021)

Simulation links for Chapter 2

3.  Simulation with JavaScript 'Jollies'.

Three examples are explained.  First a Java applet serves as a 'whiteboard' on which simulation results are plotted.  The simulation code can be edited inside a simple text box shown on a web page.  The method requires no software environment beyond the use of a simple browser.

The second example uses similar code to move images around the screen, to make a picture of the dynamic system.  The third example is similar to the first, except that the state equations are represented in a standard matrix form.

3.1. Introduction.   
3.2. How a Jollies simulation is made up   
3.3. Moving images without an applet   
3.4. A generic simulation   

Simulation links for Chapter 3

4.  Practical control systems.

Control is all about manipulating the inputs to make the system do what we want it to, whether it is an aircraft or a simple domestic oven.  Anything that we want to control, we must be able to measure or estimate.  Having decided what input to apply to the system, we must have some means of applying it.  The process of making the inputs depend on the measured output is given the term 'feedback'.

The concepts of accuracy and precision are explored, while outlining methods of measuring many useful variables.

An on-line position control experiment is outlined and an inverted-pendulum experiment is promised for later.  The simulation allows feedback strategies to be explored.

4.1. Introduction.   
4.2. The nature of sensors.   
4.3. Velocity and acceleration   
4.4. Output transducers   
4.5. A control experiment.   

Simulation links for Chapter 4

5.  Adding control.

When we have some equations for a linear system, we can add further equations to represent a controller.  We see that the closed-loop system is just another linear system.  We can use heavyweight matrix methods to analyse such a system.

5.1. Introduction.   
5.2. Vector state equations.   
5.3. Feedback.   
5.4. Another approach.   
5.5. A change of variables   
5.6. Systems with time delay and the PID controller.   
5.7. Simulating the water heater experiment.   

Simulation links for Chapter 5

6.  Systems with real components and saturating signals - use of the phase-plane.

So far, it looks as if we can choose feedback values to obtain any response that we want.  A motor with a saturating drive changes the picture.  But even if the system and its controller are highly non-linear, we can investigate the controlled performance with the aid of simulation.  Alternatively we can try some back-of-an-envelope graphical methods.

6.1. An early glimpse of pole assignment   
6.2. The effect of saturation   
6.3. Meet the phase plane.   
6.4. Phase plane for saturating drive   
6.5. Bang-bang control and sliding mode.

Simulation links for Chapter 6

7.  Frequency domain methods.

Testing a system with sinusoidal signals, the frequency response, gain and phase, the effect of gain on stability of feedback, poles and zeros.

Why is "classical control theory" packed out with frequency domain methods?  We see historical reasons and meet straightforward analytical methods, useful 'rules of thumb' such as 'gain margin', 'phase margin' and 'roll-off'.

7.1. Introduction   
7.2. Sine-wave fundamentals   
7.3. Complex amplitudes.   
7.4. More complex still - complex frequencies.   
7 5. Eigenfunctions and gain.   
7.6 A surfeit of feedback   
7.7. Poles and polynomials.   
7.8. Complex manipulations   
7.9. Decibels and octaves.   
7.10. Frequency plots and compensators.   
7.11. Second order responses.   
7.12. Excited poles.   

Links for Chapter 7

8.  Discrete time systems and computer control.

Discrete time control is revealed to be at least as easy as continuous time.  Discrete time equations are introduced with the state transition matrix.  It is shown that a line or two of software can be used to estimate velocity.

8.1. Introduction   
8.2. State transition.   
8.3. Discrete-time state equations and feedback.   
8.4. Solving discrete time equations   
8.5. Matrices and eigenvectors.   
8.6. Eigenvalues and continuous time equations.   
8.7. Simulation of a discrete-time system.   
8.8. A practical example of discrete time control.   
8.9. And there's more.   
8.10. Controllers with added dynamics.   

Links for Chapter 8

9.  Controlling an inverted pendulum.

A simulation is progressively built up to include drive limitation, friction, sensor errors, estimation of velocities by software and drive limitation.

9.1. Deriving the state equations.   
9.2. Simulating the pendulum   
9.3. Adding reality   
9.4. A better choice of poles   
9.5. Increasing the realism.   
9.6. Tuning the feedback pragmatically.   
9.7. Constrained demand   
9.8. In conclusion   

Links for Chapter 9

10. More frequency domain background theory   

10.1. Introduction   
10.2. Complex planes and mappings.   
10.3. The Cauchy-Riemann equations   
10.4. Complex integration.   
10.5. Differential equations and the Laplace Transform   
10.6. The Fourier Transform   

Links for Chapter 10

11. More Frequency Domain Methods   

11.1. Introduction.   
11.2. The Nyquist plot.   
11.3. Nyquist with M-circles   
11.4. Software for computing the diagrams.   
11.5. The 'curly-squares' plot.   
11.6. Completing the mapping.   
11.7. Nyquist summary.   
11.8. The Nichols chart.   
11.9. The Inverse Nyquist diagram.   
11.10. Summary of Experimental Methods.   

Links for Chapter 11

12. The Root Locus.   

12.1. Introduction.   
12.2. Root locus and mappings.   
12.3. A root locus plot.   
12.4. Plotting with poles and zeroes.   
12.5. Poles and polynomials.   
12.6. Compensators and other examples.   
12.7. Conclusions.   

Links for Chapter 12

13. Fashionable topics in control   

13.1. Introduction.   
13.2. Adaptive Control.   
13.3. Optimal control   
13.4. Bang-bang and fuzzy control
13.5. Neural nets
13.6. Heuristic and genetic algorithms.
13.7. Conclusion.

14.  Linking the time and frequency domains   

14.1. Introduction   
14.2. State space and transfer functions.   
14.3. Deriving the transfer function matrix.   
14.4. Transfer functions and time responses.   
14.5. Filters in software.   
14.6. Software filters for data.   
14.7. State equations in the companion form   

Links for Chapter 14

15.  Time, frequency and convolution   

15.1. Delays and the unit impulse.   
15.2. The convolution integral.   
15.3. Finite impulse response filters.   
15.4. Correlation
15.5. Conclusion.   

Links for Chapter 15

16.  More about time and state equations.   

16.1. Introduction   
16.2. Juggling the matrices.   
16.3. Eigenvectors and eigenvalues revisited.   
16.4. Splitting a system into independent subsystems.   
16.5. Repeated roots.   
16.6. Controllability and observability.   

17.  Practical observers, feedback with dynamics.   

17.1. Introduction   
17.2. The Kalman Filter.   
17.3. Reduced-state observers.   
17.4. Control with added dynamics.   
17.5. Conclusion   

18. Digital control in more detail.   

18.1. Introduction.   
18.2. Finite differences - the beta operator.   
18.3. Meet the z-transform.   
18.4. Trains of impulses.   
18.5. Some properties of the z-transform.   
18.6. Initial and final value theorems.   
18.7. Dead-beat response.   
18.8. Discrete-time observers.   

Links for Chapter 18

19.  Relationship between z- and other transforms.   

19.1. Introduction.   
19.2. The impulse modulator.   
19.3. Cascading transforms.   
19.4. Tables of transforms   
19.5. The beta and w transforms.   

20.  Design methods for computer control.   

20.1. Introduction.   
20.2. The digital-to analogue convertor as zero order hold.   
20.3. Quantisation.   
20.4. A position control example, discrete time root locus.   
20.5. Discrete time dynamic control - assessing performance.   

Links for Chapter 20

21.  Errors and noise.   

21.1. Disturbances.   
21.2. Practical design considerations.   
21.3. Delays and sample rates.   
21.4. Conclusion.   

22. Optimal control - nothing but the best.   

22.1. Introduction: the end point problem.   
22.2. Dynamic programming.   
22.3. Optimal control of a linear system.   
22.4. Time optimal control of a second-order system.   
22.5. Optimal or suboptimal?   
22.6. Quadratic cost functions.   
22.5. In conclusion   

Links for Chapter 22 - predictive control

Simulation example links for
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 14
Chapter 15
Chapter 18
Chapter 20
Chapter 22